
Journal of Biomedical Informatics 55 (2015) 94–103
Contents lists available at ScienceDirect

Journal of Biomedical Informatics

journal homepage: www.elsevier .com/locate /y jb in
Towards a PBMC ‘‘virogram assay’’ for precision medicine: Concordance
between ex vivo and in vivo viral infection transcriptomes q,qq
http://dx.doi.org/10.1016/j.jbi.2015.03.003
1532-0464/� 2015 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

q Software: http://Lussierlab.org/publications/N-of-1-pathways.
qq Supplement data and files: http://Lussierlab.org/publications/Ex-vivo-ViralAs-
say.
⇑ Corresponding authors at: BIO5 Institute, University of Arizona, 1657 E Helen

Street, 251, P.O. Box 210240, Tucson, AZ 85721, USA.
E-mail addresses: fdmartin@email.arizona.edu (F.D. Martinez), yves@email.

arizona.edu (Y.A. Lussier).
Vincent Gardeux a, Anthony Bosco b, Jianrong Li a, Marilyn J. Halonen c, Daniel Jackson d,e,
Fernando D. Martinez e,f,g,⇑, Yves A. Lussier a,g,h,⇑
a Department of Medicine, University of Arizona, Tucson, AZ, USA
b Telethon Institute for Child Health Research, Perth, Australia
c Department of Pharmacology, University of Arizona, Tucson, AZ, USA
d Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
e The Childhood Asthma Research and Education Network (CARE)
f Department of Pediatrics, University of Arizona, Tucson, AZ, USA
g BIO5 Institute, University of Arizona, Tucson, AZ, USA
h UA Cancer Center, University of Arizona, Tucson, AZ, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 1 December 2014
Revised 25 February 2015
Accepted 13 March 2015
Available online 19 March 2015

Keywords:
Personal transcriptome
Rhinovirus
PBMC
Genomic response
Virogram
Similarity Venn Diagrams
Background: Understanding individual patient host-response to viruses is key to designing optimal per-
sonalized therapy. Unsurprisingly, in vivo human experimentation to understand individualized dynamic
response of the transcriptome to viruses are rarely studied because of the obvious limitations stemming
from ethical considerations of the clinical risk.
Objective: In this rhinovirus study, we first hypothesized that ex vivo human cells response to virus can
serve as a proxy for otherwise controversial in vivo human experimentation. We further hypothesized
that the N-of-1-pathways framework, previously validated in cancer, can be effective in understanding
the more subtle individual transcriptomic response to viral infection.
Method: N-of-1-pathways computes a significance score for a given list of gene sets at the patient level,
using merely the ‘omics profiles of two paired samples as input. We extracted the peripheral blood
mononuclear cells (PBMC) of four human subjects, aliquoted in two paired samples, one subjected to
ex vivo rhinovirus infection. Their dysregulated genes and pathways were then compared to those of 9
human subjects prior and after intranasal inoculation in vivo with rhinovirus. Additionally, we developed
the Similarity Venn Diagram, a novel visualization method that goes beyond conventional overlap to show
the similarity between two sets of qualitative measures.
Results: We evaluated the individual N-of-1-pathways results using two established cohort-based meth-
ods: GSEA and enrichment of differentially expressed genes. Similarity Venn Diagrams and individual
patient ROC curves illustrate and quantify that the in vivo dysregulation is recapitulated ex vivo both
at the gene and pathway level (p-values 6 0.004).
Conclusion: We established the first evidence that an interpretable dynamic transcriptome metric, con-
ducted as an ex vivo assays for a single subject, has the potential to predict individualized response to
infectious disease without the clinical risks otherwise associated to in vivo challenges. These results serve
as a foundational work for personalized ‘‘virograms’’.
� 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Transcriptomic analysis of the response to a virus can be used
for various purposes, involving the understanding of its relation-
ship to disease progression or severity. In the context of respiratory
diseases such as Influenza, Human rhinovirus (HRV), or Respiratory
syncytial virus (RSV), many studies involve finding the viral
response of infected hosts. However, in many cases, the course of
a virus infection may be relatively short. This implies high
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difficulties for obtaining genetic data in a timely manner. Probably
for ethical reasons, most of those studies rely on animal models [1–
3] infected with virus to assess the within-host evolution of the
virus. Other studies overlook the progression of already infected
patients [4]. Less than five studies go as far as inoculating healthy
human patients with those viruses to study in vivo the progression
of the disease [5] and procuring transcriptomes. Although ex vivo
experiments are often undertaken before and after virus infection,
they are usually performed for the analysis of a handful of single-
locus gene expression. Few human cell transcriptome derived from
ex vivo with paired samples before and after virus infection were
available and deposited [6] in the Gene Expression Omnibus data-
base (GEO).

Interestingly, antibiograms are well-established assays that
provide precision antibiotherapy to patients. They involve cultivat-
ing bacteria infecting a specific organ of a patient, and subjecting
them to a number of tests to characterize the pathogen and its
resistance to a number of distinct antibiotics. In contrast, the field
of infectious disease has not produced similar assays to test the
host (human subject) exposed to viruses. Therefore, there is an
opportunity to improve precision medicine by establishing the per-
sonal response to viruses that may impact one’s disease treatment
(e.g. Chronic Obstructive Lung Disease). We conceived the follow-
ing ex vivo assays and expression analysis methods in order to pro-
vide tools that would allow systematic non-invasive investigations
of the dynamic transcriptome response to viruses. As viruses infect
cells, the viral transformation of these cells caused by the introduc-
tion of viral DNA or RNA is associated with substantial regulatory
changes leading to favoring virus replication over normal cell func-
tions. We thus use the dynamics transcriptomic response as a
proxy for the sum of all upstream regulatory disruption caused
by the viral infection, an assessment of the viral regulome specific
to a personal genome – or simply said: ‘‘virogram’’.

In this study, we aimed at analyzing the transcriptomic
response of ex vivo virus-exposed Peripheral Blood Mononuclear
Cells (PBMC) human cells, and compare it to the in vivo response
in the same conditions. We hypothesized that ex vivo analyses
can recapitulate in vivo dysregulation in this experimental context.
To this end, we used well-established enrichment methodologies
such as GSEA, to assess the pathways at play in presence of a virus.
However, those methods of analysis use cohort-based models,
which create predictive models based on average/commonly found
features across patients, thus overlooking individualized transcrip-
tomic response to stressors that may reveal the summative effect
of common as well as private (i) genetic polymorphisms and
(ii) epigenetic modifications.

N-of-1-pathways is a framework dedicated to the personalized
medicine field that we initially proposed in the context of cancer
analyses [7,8]. It was successfully applied to lung adenocarcinoma
visualization of single patient survival and proved to unveil bio-
logically significant dysregulated pathways by using only one pair
of samples taken from the same patient in two different conditions
[7] (such as before and after treatment or uninvolved vs tumoral
cells). It was also applied in ovarian and breast cancer cell lines
to confirm the unsupervised identification of dysregulated path-
ways after a knockdown of PTBP1 and PTBP2 genes that control
alternative splicing [8]. In the current study, we aimed at showing
that the same N-of-1-pathways framework can be used in very dif-
ferent conditions than cancer such as the transcriptomic response
of virus stress.

One component of N-of-1-pathways design relies on the calcula-
tion of the semantic similarity of pathways. Therefore, we focused
our analyses on the Gene Ontology (GO) database, which regroups
genes into biologically meaningful gene sets, connected through an
ontology tree. Several tools were developed for analyzing these
‘‘GO Terms’’, involving measures of similarity based on the
topology of the ontology. In this paper, we propose a novel
Similarity Venn Diagram representation for helping readers to
understand not only the overlap between two lists of GO Terms,
but also their similarity, based on an information-theory equation
measuring the semantic similarity between two GO Terms.
Further, we demonstrated that this representation could also be
used in a more general comparison of two lists where a measure
of similarity exists for comparing its elements.

Therefore, the major goals of this study are (i) to characterize
the mechanistic response to rhinovirus, (ii) to validate our
patient-centered framework, N-of-1-pathways, in alternative con-
ditions, and (iii) to extend the representation of classic Venn dia-
grams from simple overlap to more complex similarity
comparisons.
2. Materials and methods

2.1. PBMCs incubated with viruses that generated the ‘‘Human ex vivo
infected’’ dataset

The live PBMCs had been isolated from blood samples collected
from four human subjects under a protocol approved by The
University of Arizona Internal Review Board. Whole blood was
obtained from donors and placed in Becton Dickenson’s CPT tubes
that were centrifuged according to standard protocols to obtain
PBMCs, and then each aliquoted in two paired samples. Each sam-
ple of the pair was subsequently exposed to and incubated with
either (i) Human Rhinovirus serotype 16 (ex vivo infected sample)
or (ii) sterile medium (control ex vivo non-infected sample). They
were incubated at 37 �C in 5% CO2 for 24 h. This protocol resulted
in 4 ex vivo infected + 4 ex vivo controls = 8 paired samples. RNA
was extracted from these samples, amplified, tagged, and hybri-
dized on Affymetrix Human Gene 1.0 ST microarrays according
to standard operating procedures. Gene expression data were sub-
mitted to Gene Expression Omnibus (GEO; GSE60153, http://www.
ncbi.nlm.nih.gov/geo/) and thus generated the ‘‘Human ex vivo
infected’’ dataset (Table 1).

2.2. Dataset and preprocessing

Robust Multiple-array Average (RMA) normalization [9] was
applied on each patient data independently (2 paired samples at
a time to avoid bias in the single-patient experiments) using
Affymetrix Power Tools (APT) [10]. We also used an external data-
set downloaded from the GEO repository on 07/14/2014 compris-
ing a cohort of 20 healthy patients who were inoculated with the
rhinovirus. Blood samples were taken before inoculation and dur-
ing the peak of symptoms on the disease. Among those 20 patients,
10 were defined as symptomatic and the other 10 as asymp-
tomatic. We used the 9 microarrays available paired data from
the symptomatic patients and normalized them using the same
RMA normalization technique. Table 1 recapitulates the content
of each of those two datasets.

2.3. Gene sets

We aggregated genes into pathway-level mechanisms using the
org.Hs.eg.db package [11] (Homo Sapiens) of Bioconductor [12],
available for R statistical software [13]. We used two different gene
sets databases:

(1) Gene Ontology (GO) Biological Processes (GO-BP) [14,15].
Hierarchical GO terms were retrieved using the
org.Hs.egGO2ALLEGS database (downloaded on 05/15/2013),
which contains a list of genes annotated to each GO term
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Table 1
Gene expression dataset description.

Dataset Human ex vivo
infected dataset

Human in vivo
infected dataset

References Authors Gardeux V, Bosco A, et al. (present paper) Zaas et al. Cell Press (2009) [5]
Source
(GEO)

GSE60153 (new dataset) GSE17156

Platform Affymetrix GeneChip� Human Gene 1.0ST Affymetrix Human Gene U133A 2.0
Probes measured 33,297 22,277
Genes mapped to probes 19,915 14,288
Human Subjects

(paired samples)
Total 4 9
Control
samples

4P PBMCs incubated with control medium 9P PBMCs collected 24 h prior to infection

Case 4P PBMCs incubated ex vivo with virus 9P PBMCs collected at peak symptoms post intranasal virus
inoculation (6 h – 3 days)

Viral infection experiment Live human PBMC cells infected ex vivo & incubated with
Human Rhinovirus serotype 16 (ATCC� VR-283)

Human subjects inoculated in vivo intra-nasally with Human
Rhinovirus serotype 39 (Charles River Lab; Malvern, PA)

P Indicates paired samples derived from the same individual rhinovirus-exposed with matched non-exposed PBMCs samples.
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(gene set) along with all of its child nodes according to the
hierarchical ontology structure.

(2) KEGG pathways [16,17] were retrieved using the
org.Hs.egPATH database (download 05/15/2013).

Gene sets included in the study comprised between 15 and 500
genes (among the genes measured by the microarray). This led to a
total of 3234 GO-BP gene sets and 205 KEGG pathway gene sets.
This filtering protocol follows the default one used in GSEA and a
protocol we have previously identified as optimal for these studies
[7,8,18–21].

2.4. Gene Sets Enrichment Analysis (GSEA)

Gene set enrichment analysis was conducted on both datasets.
The GSEA v2.0.10 software [22] was used with the default parame-
ters except for the permutation parameter selection, which was set
to ‘‘gene set’’ instead of ‘‘phenotype’’. Gene set permutation was
chosen to achieve enough statistical power for permutation resam-
pling due to the small number of samples. Only dysregulated GO-
BP terms and KEGG pathways reaching the False Discovery Rate
(FDR) 6 5% significance threshold were retained for further analy-
sis. It resulted in a list of 399 dysregulated GO-BP terms between
the non-exposed and rhinovirus-exposed samples for the ex vivo
dataset, and 194 GO-BP terms and 11 KEGG pathways for the
in vivo dataset. The complete lists of results from GSEA are avail-
able as Supplement File 1 – GSEA.

2.5. Differentially expressed genes (DEG) calculation

Differentially expressed genes (DEG) between non-exposed and
rhinovirus-exposed samples were calculated using the SAMR pack-
age in R statistical software [23]. Genes reaching the FDR 6 5%
threshold were considered significantly dysregulated between
the two conditions. Those protocols resulted in a list of 458
differentially expressed genes (DEG) found significantly
dysregulated in the ex vivo dataset and 709 DEG in the in vivo
dataset. The complete lists of DEG are available as Supplement
File 2 – DEG+Enrichment.

2.6. DEG enriched into GO-BP terms (DEG + Enrichment)

Differentially expressed genes (DEG) were enriched into GO-BP
terms using the DAVID website [24,25]. GO-BP terms reaching the
FDR 6 5% threshold were considered significantly enriched. It
resulted in a list of 111 dysregulated GO-BP terms between the
non-exposed and rhinovirus-exposed samples for the ex vivo data-
set, and 20 GO-BP terms for the in vivo dataset. The complete lists
of enriched pathways from DEG are available as Supplement File 2
– DEG+Enrichment.

2.7. Information theoretic similarity (GO-ITS)

We calculated the similarity between GO-BP terms using Jiang’s
information theoretic similarity [26] that ranges from 0 (no simi-
larity) to 1 (perfect match). We have previously shown that a
GO-ITS score P0.7 robustly corresponds to highly similar GO terms
using different computational biological validations: protein inter-
action [27,28], human genetics [29], and Genome-Wide
Association Studies [30]. GO-ITS was calculated on each distinct
pair among the 3234 GO terms of size P15 and 6500, leading to
10,458,756 pairs of which 59,577 have a GO-ITS P 0.7 (�5.6 out
of 1000).

2.8. Novel Similarity Venn Diagram

In order to compare the different list of dysregulated GO-BP
terms, we computed uncommon Venn Diagrams. Since every two
GO-BP terms possess a measurable degree of similarity (see GO-
ITS definition), it is possible to compare the two sets not only by
direct overlap but also by degree of similarity. For each Similarity
Venn Diagram, we calculated the number of GO-BP terms similar
to each of the two sets using a strong similarity GO-ITS threshold
P0.7 (�0.0056 pairs of all GO terms pairs meet this stringent cri-
teria). This leads, for each Similarity Venn Diagram, to two addi-
tional values: the number of pathways (i) belonging to the set A
and similar to the set B and (ii) vice versa. If we take only the inter-
section of those two sets, we obtain the traditional Venn
Diagram overlap. Of note, this technique may be extended to as
many sets as needed, and different representations can be used.
Fig. 1 shows three possible representations of those Novel
Similarity Venn Diagrams, the first one (Panel A) being the one we
chose for this paper, because of its practicality for two sets studies.
The source code and GO-GO similarity matrix used for computing
the Similarity Venn Diagrams in this manuscript are available at
http://lussierlab.org/publications/SimilarityVenn.

2.9. Similarity Contingency Table

Further, we can calculated the statistical significance of the
similarity for the Similarity Venn Diagrams between two sets (here
called A and B). We proposed a statistic based on the following two
steps: (1) among all elements in set A and all elements in set B,
taken from the statistical universe X, identify similar pairs among
‘‘every possible pair combinations from set A and set B’’ (denoted
‘‘A � B’’), and (2) compare this value against all the pairs that are

http://lussierlab.org/publications/SimilarityVenn
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Fig. 1. Similarity Venn Diagrams. This Figure shows three possible representations of Similarity Venn Diagrams. Panels A and B are an extension of the traditional Venn
Diagram representation. They contain the same overlapping number of entities in the middle and also two extra numbers describing the similarity of each set to the other.
This similarity depends on a threshold chose for assessing two entities to be significantly similar (in the following paper, we chose GO-ITS P 0.7). While Panel A is the most
ergonomic representation with 2 sets, Panels B and C are easier to represent and apprehend in higher dimensions (see Supp. Fig. S1 for a few possible extensions with 3 sets).
Panel C is the simplest representation overall, but merges the overlap with the similarity, which displays less information.

Table 2
Similarity Contingency Table for computing significance of the similarity in a Similarity
Venn Diagram. This table shows a numeric example from Fig. 2, where we have two
sets of GO-Terms A (|A| = 399) and B (|B| = 111). There are 399 � 111 possible pairs
between sets A and B (|A � B| = 44,289) among which we found 1,730 pairs that have
an ITS P 0.7. Moreover, the statistical universe X contains 3,234 GO-Terms which
leads to a total number of possible pairs of |X �X| = 10,458,756, among which we
found 58,577 pairs that have a GO-ITS P 0.7. A Fisher’s Exact Test gives an Odds Ratio
of 7.28 and a very significant p-value <1.0E�100, which implies that the similarity
between the two sets is high.

Pair with similar
elements

Pair with NOT
similar elements

Pair in Venn (2A � B) 1730 42,559
Pair NOT in Venn (RA � B) 57,847 10,356,620

Legend: 2 ‘‘is an element of’’; R ‘‘is not an element of’’;
Background = total number of possible pairs (|X �X|).
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similar in X �X. To this end, we propose a Similarity Contingency
Table in which conventional calculations of Odds Ratio and enrich-
ment can be calculated (such as Fisher’s Exact Test). Table 2 shows
this Similarity Contingency Table in detail, with a numeric example
taken from Fig. 2.

2.10. GO-Modules

We previously developed GO-Module [31] to synthesize and
visualize enriched GO terms as a network. GO-Module reduces
the complexity of nominal lists of GO results into compact modules
organized in two distinct ways: by (i) constructing modules from
significant GO terms based on hierarchical knowledge, and (ii)
refining the GO terms in each module to distinguish the most sig-
nificant terms (key terms of the module), subsumed terms to the
Key term and terms of lesser importance (grey in Fig. 4).

2.11. N-of-1-pathways framework

N-of-1-pathways [7,8] is a methodology unveiling dysregulated
pathways from only two paired samples. In this study, it was
applied independently for each patient, on the paired non-exposed
and rhinovirus-exposed samples in both in vivo and ex vivo data-
sets. The N-of-1-pathways framework and software identifying
the dysregulated pathways (the scoring method) are modular
and several different models can be substituted for the ‘‘pathway
identification module’’:
2.11.1. Wilcoxon model
The ‘‘Wilcoxon’’ model was already validated on a retrospective

lung adenocarcinoma survival prediction study [7] and in vitro
using both ovarian and breast cancer cell lines to identify an
experimentally knocked down pathway [8]. This model starts by
restricting the gene expression data to the genes belonging to
the considered gene set. Then it applies a Wilcoxon signed-rank
test of the two restricted vectors of gene expressions to assess
the dysregulation of this gene set. Basically, this model recognizes
gene sets having an over-representation of up-regulated genes
compared to down-regulated genes, or vice versa. Two different
methods were used to adjust p-values for multiple comparisons:
Bonferroni (for a more stringent set of results) and Benjamini
and Hochberg (False Discovery Rate; FDR) [32]. In each paired sam-
ple, only dysregulated pathways with adjusted p-values following
FDR 6 5% or Bonf. 6 5% were retained for further analysis. The
complete lists of dysregulated pathways unveiled from the
Wilcoxon model for each patient are available as Supplement File
3 – Wilcoxon.
2.11.2. Single-Sample GSEA or ssGSEAFC model
The ssGSEA software is available from the GSEA portal (http://

www.broadinstitute.org/gsea/index.jsp) and does not have a
publication describing how its single sample method differs from
the described cross-sample GSEA v2.0.10 software [22]. Although
without published evaluation (simulation or experimental) by
the method’s developers, ssGSEA was utilized on single samples
[33]. We have previously extended the use of ssGSEA in the context
of paired samples within the N-of-1-pathways framework as an
alternative to the Wilcoxon model. In our implementation, we used
the ‘‘ssGSEAPreranked’’ version that is applied on a pre-ranked list
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of genes and computes a permutation-based p-value for each gene
set. In the context of our paired samples framework we pre-ranked
the genes according to their Fold Change (FC) between non-
exposed and rhinovirus-exposed samples calculated separately
for every patient. This usage of ssGSEA was never formally
described, so we called this model ssGSEAFC in order to show its
specific application to Fold Change (FC) in paired data. The com-
plete lists of dysregulated pathways obtained from this ssGSEAFC

model for each patient are available as Supplement File 4 – ssGSEA.
Fig. 2. Robustness of pathways enriched separately in the two datasets is
confirmed by consistency of GSEA and DEG + Enrichment. Those specifically-
2.12. Principal Component Analysis (PCA)

The PCA was computed using the ‘‘FactoMineR’’ package in R
(with default parameters). We first computed the matrix of p-val-
ues computed for every pathway assessed for each patient. Then,
these p-values were transformed into Z-scores using an inverse
standard Normal distribution (Z-score = abs(qnorm(p-value/2)) in
R. The PCA was finally applied on this matrix of Z-scores.
designed Similarity Venn Diagrams were obtained by two different enrichment
techniques tested subsequently in two distinct datasets: human in vivo infection
and human ex vivo infection. Their particularity is to show both overlap and
similarity across two lists of enriched GO-BP terms (Methods: Similarity Venn
Diagrams). Hence, by taking each list as reference reciprocally, this leads to two
different numbers of similarities (one from the perspective of each list, visible in the
additional dotted-delimited space). For example, in Panel A, 61 GO-BP terms are
found overlapping between the two methods, and an additional 211 (among the
399 dysregulated GO-BP terms unveiled by GSEA) are similar to the list of pathways
unveiled by the DEG + Enrichment method in the ex vivo dataset (GO-ITS cutoff
P0.7). The complete lists of overlapping and similar pathways from the two
diagrams are available as Supplement File 5 – Fig. 2. Of note, only �5.6 out of 1000
pairs of GO terms are found with GO-ITS P 0.7 among all possible pairs of GO-BP
terms (Methods: GO-ITS), thus the ‘‘observed’’ similarity of the above Venn
Diagrams far surpasses the ‘‘expected’’ one and is very significant (Panel A:
Similarity Odds Ratio � 7.28, p < 10�100; Panel B: Similarity Odds Ratio � 2.33,
p = 9.73 � 10�8).
3. Results

3.1. Comparison of cohort-based results within the ex vivo and in vivo
studies

We compared the concordance of the results unveiled from
cohort-based methods (conventional) across four patients. We
applied two well-established, cohort-level methods: GSEA
(Methods: GSEA) and DEG + Enrichment (Methods: DEG +
Enrichment) in the two datasets by comparing the virus-exposed
to the non-exposed samples. In order to visualize their concor-
dance, we plotted Similarity Venn Diagrams (Methods: Similarity
Venn Diagram) between the results unveiled by GSEA and
DEG + Enrichment (at FDR 6 5%), separately within the ex vivo
and the in vivo datasets. Fig. 2 shows the overlap as well as the
similarity between the two techniques. Supplement Tables S1 and
S2 recapitulate the pathways found dysregulated by both
techniques.
3.2. Comparison of the individual results to cohort-based results across
the ex vivo and in vivo studies

After having established the concordance of results of the two
cohort-level methods within each study, we aimed at comparing
the two studies together. Fig. 3, Panel A shows a standard Venn
Diagram comparing the differentially expressed genes unveiled
in each study (Methods: DEG calculation). It reveals a very strong
overlap between the in vivo and ex vivo studies. The full list of over-
lapping DEG can be found in Supplement Table S3. Fig. 3, Panel B
contains two Similarity Venn Diagrams, the green one representing
the overlap and similarity between the GO-BP terms unveiled by
GSEA across the two studies, and the purple one representing the
same information, but when applying the DEG + Enrichment
method. The intersections of the two lists of dysregulated path-
ways -whether differentially expressed genes or dysregulated
pathways- are very significant (Panel A: Odds Ratio � 5.226,
p = 3.41 � 10�25; Panel B-Green Diagram: Similarity Odds
Ratio � 1.95, p = 3.69 � 10�68; Panel B-Purple Diagram:
Similarity Odds Ratio � 3.04, p = 5.85 � 10�9).

In order to understand the biological relevancy of the GO-BP
terms unveiled across the two studies (in vivo and ex vivo), we dis-
played the 56 GO-BP Terms found dysregulated by the GSEA
method as a network (Fig. 4). The connections between the GO-
BP Terms are inferred from the ontology topology, which helps
to see the groups of terms interconnected. Table 3 also
recapitulates the seven GO-BP terms concordantly found dysregu-
lated by the DEG + Enrichment method.

3.3. Concordant dysregulated pathways unveiled between infected and
uninfected samples

We applied the Wilcoxon model of the N-of-1-pathways frame-
work for each patient’s paired data between the control sample
and the one subject to rhinovirus (Methods: N-of-1-pathways).
The aim of this particular comparison was to identify the pathways
dysregulated ex vivo in presence of a virus for each patient
independently. Then, we aggregated the dysregulated pathways
obtained for each patient to identify the pathways commonly dys-
regulated. Table 4 shows the whole list of GO-BP Terms and KEGG
pathways (Methods: Gene sets) found significantly dysregulated
across the four patients (Bonf. 6 5%). The results are structured
according to the ontology structure for better clarity. We can see
pathways such as ‘‘response to virus’’ or ‘‘Cytosolic DNA-sensing
pathway’’, which are obviously biologically relevant regarding
the studied phenotype. Taken together, those results show that:
(1) the experimental protocol used is viable, and (2) the N-of-1-
pathways methodology is able to uncover relevant pathways in this
context. Moreover, we can see a certain ‘‘concordance’’ in the direc-
tion of dysregulation unveiled in all those pathways. For example,
the ‘‘response to virus’’ pathway is found up-regulated in the
rhinovirus (RV) sample, i.e., the majority of the genes included in
the pathway are up-regulated in the RV sample. In comparison,
the KEGG pathways, ‘‘Oxidative phosphorylation’’ and
‘‘Huntington’s disease,’’ are found down-regulated, and ‘‘Olfactory
transduction’’ is the only pathway showing different ‘‘directions’’
between the four patients.
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Fig. 4. Overlapping GO-BP Terms between ex vivo and in vivo studies by GSEA method. This network represents the GO-BP terms found commonly dysregulated between the
ex vivo and in vivo studies by GSEA (Fig. 2, left of Panel B). For better readability, we first reduced the size of the network using the GO-Module (Methods: GO-Module)
method. The majority of the network shows a competent host innate immune response, with the subset of interferons I and Gamma among cytokines (center) and the cellular
response of T-cells lymphocytes among leucocytes (right). The host-response to virus is shown in the hierarchies of the leftmost part of the network, and a few dissociated
terms are left in the bottom right part.

Fig. 3. Concordance of ex vivo and in vivo human studies. These Venn Diagrams show the overlap and similarity of results unveiled across the two studies. Panel A shows the
overlap between the two lists of dysregulated genes found using SAMR method (Methods: DEG calculation). Since the two studies used two different microarray chips, we
showed in parenthesis the number of dysregulated genes that can be found in the common background of both chips (common background = 12,819 genes). The overlap is
very significant (Fisher’s Exact Test p = 3.41E�25; Odds Ratio = 5.226). Panel B shows the GO-BP terms that are overlapping or similar across both datasets by two different
techniques: GSEA and DEG + Enrichment. The complete lists of overlapping and similar pathways/DEG from the three diagrams are available as Supplement File 6 – Fig. 3.
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Table 4
GO-BP terms and KEGG pathways found dysregulated in all four patients’ PBMC cells
infected ex vivo, using N-of-1-pathways analysis of the dynamic transcriptome
(Wilcoxon model; Bonf.65%; RMA Normalization). The ‘‘Size’’ column corresponds to
the number of genes in the gene set/pathway.

Identifier Description Size Dysregulation

GO:0009615 Response to virus 247 "
GO:0019221 Cytokine-mediated signaling

pathway
341 "

GO:0045087 Innate immune response 527 "
GO:0034340 Response to type I interferon 73 "
‘ GO:0071357 Cellular response to type I

interferon
72 "

x GO:0060337 Type I interferon-mediated
signaling pathway

72 "

hsa04623 Cytosolic DNA-sensing pathway 56 "
hsa00190 Oxidative phosphorylation 132 ;
hsa04740 Olfactory transduction 388 2; 2"
hsa05016 Huntington’s disease 183 ;
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Fig. 5. ROC curves showing robustness of the N-of-1-pathways predictions in each ex
calculated with different nominal p-value cutoffs for each patient. As measured by the
ssGSEAFC model in every instance (one-tailed Wilcoxon matched paired signed rank test
models of N-of-1-pathways by pooling GO-BP and KEGG results: Wilcoxon Model p = 0.0

Table 3
Overlapping GO-BP Terms between ex vivo and in vivo studies when
DEG + Enrichment is applied. These terms correspond to the overlap in the rightmost
(Purple, right of Panel B) Similarity Venn Diagram of Fig. 3.

GO Term Description

GO:0009615 Response to virus
GO:0006955 Immune response
GO:0007267 Cell–cell signaling
GO:0008285 Negative regulation of cell proliferation
GO:0009719 Response to endogenous stimulus
GO:0009725 Response to hormone stimulus
GO:0010033 Response to organic substance

100 V. Gardeux et al. / Journal of Biomedical Informatics 55 (2015) 94–103
3.4. A proxy Gold Standard based on the in vivo data for comparison at
the patient-level

Verifying experimentally all predicted pathways is rate-limiting
and extremely expansive. Therefore, identifying a gold standard for
studies generating dozens of GO terms and KEGG pathways is
unrealistic. On the other hand, similarity to previously obtained
results in comparable context allows for generating proxy Gold
Standards. Since we aimed at finding if the N-of-1-pathways sin-
gle-patient framework was able to uncover pathways significant
in individual patients, we created a ‘‘proxy Gold Standard’’ using
the list of dysregulated pathways unveiled by GSEA in the in vivo
dataset in order to obtain a global picture of the pathways we
should find dysregulated. We used FDR 6 5% as a cutoff to fix the
list of dysregulated gene sets, which lead to 194 GO-BP terms
and 11 KEGG pathways found significantly dysregulated in the
in vivo dataset. Then, we ran the N-of-1-pathways framework on
each patient of the ex vivo dataset and compared the results with
this proxy Gold Standard. This comparison allow us to see the
individual transcriptomic response similarity between the ex vivo
and in vivo protocols. As a matter of comparison, we used both
the Wilcoxon and the ssGSEAFC models (Methods: N-of-1-path-
ways). Fig. 5 shows the ROC curves corresponding to this
comparison.

3.5. N-of-1-pathways scores naturally split the in vivo patients by
phenotype

In order to demonstrate the scalability of the method to other
viruses and to show the individualized pathway scores could pre-
dict the clinical outcome (symptomatic vs asymptomatic infec-
tions), we performed an additional study. We used more samples
KEGG
(GS = 11 pathways)

GO-BP 
(GO-ITS similarity
ITS ≥ 0.7 
GS = 194 GO Terms)

23BUS91BUS

cificity)

N−of−1−pathways (model=Wilcoxon)
N−of−1−pathways (model=ssGSEA)

UC=0.855

AUC=0.632

AUC=0.690

AUC=0.586

AUC=0.808

AUC=0.538

AUC=0.710

AUC=0.450

0.18.06.04.02.00.00.18.06.04.0

AUC: Area Under the Curve

vivo infected PBMC confirmed by in vivo human infection study. ROC curves are
Area Under the Curves (AUC), N-of-1-pathways’ Wilcoxon model outperforms the

p = 0.0039). As the theoretical random AUC is 0.5, we tested the significance of each
04; ssGSEAFC Model p = ns (using the one-tailed Wilcoxon signed rank test).



Fig. 6. Principal Component Analysis of N-of-1-Pathways Scores discriminates asymptotic patients from symptomatic infected patients in vivo (PBMC expression). The PCA
analysis was conducted on the Z-scores matrix (Patients � GO-BP) produced by the Wilcoxon model within the N-of-1-pathways framework (Methods: PCA) in the context of
two different virus exposures (Rhino = rhinovirus; Flu = Influenza). Each data point is a distinct patient for which all GO-BP Z-scores were presented to the PCA. In both PCA
plots, we can see that the two first components cluster the symptomatic patients together. Of note, the PCA method is totally unsupervised, which suggests that N-of-1-
pathways produces relevant p-values for each GO-BP term.
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from the in vivo dataset [5] than the 9 symptomatic patients.
Indeed, the dataset also contains 10 patients that were exposed
to the rhinovirus but remained asymptomatic. We ran the N-of-
1-pathways Wilcoxon model on those extra 10 patients and looked
for differences in the individual representation of the dysregulated
pathways between the two groups. Of note, for these asymp-
tomatic patients, the ‘‘exposed sample’’ was extracted after 72 h
of exposure, which corresponds to the median time for peak symp-
toms from symptomatic patient post inoculation. Fig. 6 shows a
Principal Component Analysis that clearly clusters the two groups
of patients without any supervision or pre-treatment of the N-of-1-
pathways scores. This protocol was applied for the Rhinovirus as
well as Influenza, which were both studied in the in vivo dataset
[5]. Of note, the ssGSEAFC model also clusters the data but the clus-
ters are less visible (data not shown).
4. Discussion

Overall, this study shows that the biology is concordant
between ex vivo and in vivo assays, showing a significantly high
similarity of biologically relevant functions to viral infection.
Indeed, Figs. 2 and 3 show that conventional cohort-level methods
(GSEA and enrichment of DEG) obtain very concordant results both
within each study and across ex vivo and in vivo studies.
Concerning the biological meaning of the results, Fig. 4 probably
synthetizes best their range. Cytokines are broad categories of
small proteins that are important in cell signaling. Among them,
interferons are released by host cells in response of pathogens.
Here, the ex vivo and in vivo studies corroborate in viral response
specificity. Specifically, Fig. 4 shows that the cytokine regulation
leads to only interferons Type I and Gamma (c) to be dysregulated.
Type I interferons are well-studied molecules that play an essential
role in viral functions, such as inducing direct anti-viral effects, as
well as regulating innate and adaptive autoimmune systems [34].
Interferon c is crucial for immunity against viral infections and is
produced rapidly by natural killer cells in viral infection and at a
later stage by differentiation of T cells [35]. Additionally, to the
rightmost part of Fig. 4, the network shows a strong cellular innate
immune response of leukocyte migration in response to chemo-
taxis signal, leucocyte mediated cytotoxicity. Among leukocytes,
multiple GO terms specify T cell lymphocytes mediated immunity.
Since rhinovirus infections are the most frequent cause of the com-
mon cold, it is not surprising that the in vivo study shows a
response of T cells (e.g. memory T cells) as a result of acquired
immune response from previous rhinovirus infections.

In the context of precision medicine, Table 4 recapitulates the
main biological processes dysregulated between the virus-exposed
and control samples. Unsurprisingly, every patient harbors dys-
regulated pathways such as ‘‘response to virus’’ or ‘‘innate immune
response’’. The motivating part is that N-of-1-pathways is able to
uncover this dysregulation at the single subject level. Moreover,
Fig. 5 shows that the patient-level results obtained by the N-of-
1-pathways framework are concordant with conventional cohort-
level methods. On the methodological aspect, we have shown
again that the Wilcoxon model of the N-of-1-pathways framework
was more accurate than the ssGSEAFC model when the individual
results are compared to a proxy gold standard. Further, Zaas
et al. established the separation of the asymptomatic from symp-
tomatic phenotype of a rhinovirus infection through supervised
studies [5], suggesting that the feasibility is not trivial. Here, we
show that integrating both the uninfected and virus-exposed
PBMC transcriptome states into a single dynamic transcriptome
interpretation probably increases the sensitivity since an unsuper-
vised PCA can identify this phenotype on its two first components
(Fig. 6). Future studies are required to develop and test improved
models even though the lack of similarity of pathways dysregu-
lated on an individual level with a ‘‘consensus’’ proxy gold stan-
dard can be explained by individual variation. Since we
pioneered single subjects transcriptome analyses, very few studies
report individual pathway variations. In our previous study in can-
cer, individual similarity to a gold standard varied considerably
and a higher dissimilarity was significantly associated with poor
patient survival [7]. We had initially hypothesized this outcome
as clonal cancer cell selection in response to therapy would likely
favor cancer cell having more therapeutic escape mechanisms (in
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other words more dysregulated). Additional studies comprising
infected hosts symptoms would provide evidence to the reliability
of the N-of-1-pathways framework to unveil individual subject
mechanisms of resistance or sensitivity to infections.

This new application of the N-of-1-pathways framework differs
in many ways with our previous applications in cancer. The
obvious first difference is the biology: cancer transcriptome is a
consequence of inherited and acquired human gene mutations as
well as epigenetic changes between the normal and cancer tissues,
while a viral infection consists of the introduction of a foreign reg-
ulatory apparatus comprising non-human nucleotides (RNA or
DNA) and proteins without mutations to human genes (at least ini-
tially). Previously, we showed that the dynamic transcriptome
analysis of uninvolved vs solid tumoral tissue could be predictive
of survival at the single patient level. Here, we show that the same
framework could be used to unveil relevant individual pathway
dysregulation in white bloods cells of the PBMC samples. Since
the concept can be extended to different tissues and conditions,
it shifts the clinical implications of the results. In follow-up studies,
we are translating this process to clinical practice: a single blood
sample followed by a transcriptomic analysis of the ex vivo assay
is enough to predict future outcome (predictive virogram).
Moreover, in our previous studies, the N-of-1-pathways framework
was validated using straightforward discovery techniques such as
hierarchical clustering and principal component analysis as well
as survival curves. In this study, we extended the analysis of the
results thanks to a more elaborated Similarity Venn Diagram frame-
work (which could also be used independently). The similarity
metrics and visualization tools provide a more comprehensive
set of results as well as a straightforward visualization in order
to rapidly grasp the results and their meaning. Finally, the present
study could be considered as a preliminary step towards the future
development of ex vivo assays for precision medicine. And here this
term is unequivocal since we can unveil dysregulated pathways at
the single patient level.

We are aware that the current Wilcoxon model of the N-of-1-
pathways framework may not be accurate in certain conditions.
For example, if a batch effect is present between the two-paired
samples, we hypothesized that the Wilcoxon test may produce
False Positives results (FPs), due to the shift of the mean. While
conventional batch effect correction models could adjust FPs
across several samples, the analytical innovation required is chal-
lenging when dealing with only two samples. Further studies
involving designing new models for producing statistical signifi-
cance of dysregulated pathways with a mere two samples may cir-
cumvent this issue.

We also presented in this study an extended representation of
classic Venn Diagrams. We showed that Similarity Venn Diagrams
could display the overlap between two lists of terms, as well as
their similarity. We believe that this kind of representation is scal-
able to any field comprising sets of terms from which a similarity
metric can be obtained, such as BIG DATA results, Google™ queries,
etc. Of particular interest are the suites of analytical packages
applicable to the associated Similarity Contingency Tables we pro-
pose (e.g. Odds Ratio, enrichment studies, etc).

5. Conclusions

In conventional comparative study analyses, many samples of
different human subjects are required for achieving sufficient sta-
tistical power to draw conclusions at the level of the studied pop-
ulation. The N-of-1-pathways framework does not require a cohort
for reaching sufficient statistical power. The transcriptomic dysreg-
ulation induced by a virus is more subtle than the one induced by
cancer. Therefore these results underline the scalability of N-of-1-
pathways to many clinical conditions such as ‘‘before vs after
treatment’’, ‘‘paired single cell studies’’, etc. It also provides a
way of analyzing studies previously considered underpowered
due to the scarcity of patients as well as a strong framework for
patient-centered precision medicine.

This paper is the first of its kind to report a personal ex vivo
dynamic transcriptome assay that recapitulates an in vivo infection
–a foundational work for developing virograms for clinical prac-
tice. This is a step forward for precision medicine since such
ex vivo assays can be extended to interpret individualized response
to infections or putative therapies in high throughput. In other
words, these analyses are required to multiplex systematically
alternate dynamic transcriptome responses of the host conditions
in a way analogous as those conventionally conducted on patho-
gens in microbiology (e.g. antibiogram). The unveiled pathways
are biologically meaningful and can be recapitulated by several
well-established, cohort-level methods. Moreover, this concor-
dance can be found at a lower level, since we also found a strong
overlap of differentially dysregulated genes between the two con-
ditions. Therefore, this raises the question of considering ex vivo
studies when in vivo studies are either unethical and/or clinically
unadvisable.
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